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Abstract

A fast convergent numerical model is developed to calculate the effective moduli of plates with various distributions
and sizes of cracks, in which the crack line is divided into M parts to obtain the unknown traction on the crack line.
When M = 1, the model reduces to Kachanov’s approximation method [Int. J. Solids Struct. 23 (1987) 23]. Six types of
crack distributions and three kinds of crack sizes are considered, which are four regular (equilateral triangle, equilateral
hexagon, rectangle, and diamond) and two random distributions (random location and orientation, and parallel ori-
entation and random location), and one, two and random crack sizes. Some typical examples are also analyzed using
the finite element method (FEM) to validate the present model. Then, the effective moduli associated with the crack
distributions and sizes are calculated in detail. The present results for the regular distributions show some very
interesting phenomena that have not been revealed before. And for the two random distributions, as the effective
moduli depend on samples due to the randomness, the effect of the sample size and number are analyzed first. Then,
effective moduli for plates with the three sizes of cracks are calculated. It is found that the effect of crack sizes on the
effective moduli is significant for high crack densities, and small for low crack densities, and the random crack size leads
to the lowest effective moduli. The present numerical results are compared with several popular micromechanics models
to determine which one can provide the optimum estimation of the effective moduli of cracked plates with general crack
densities. Furthermore, some existing numerical results are analyzed and discussed.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The effective elastic moduli of heterogeneous materials have been extensively studied in the past decades.
The well-known micromechanics models include the non-interacting solution, the self-consistent method
(e.g. Hill, 1965; Budiansky and O’Connell, 1976; Hoenig, 1979; Laws and Brockenbrough, 1987; Laws and
Dvorak, 1987), the generalized self-consistent method (e.g. Christensen and Lo, 1979; Huang et al., 1994),
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the differential method (e.g., Salganik, 1973; Norris, 1985; Zimmerman, 1985, 1991; Hashin, 1988), and the
Mori-Tanaka method (Mori and Tanaka, 1973; Weng, 1984, 1990), among others. For cracked solids, the
Mori-Tanaka method coincides with the non-interacting solution (Benveniste, 1986). These microme-
chanics models usually simplify the complex geometry of the matrix with randomly distributed inhomo-
geneities into the problem of a homogeneous media with only one inhomogeneity. The micromechanics
models have been reviewed by many researchers, such as Willis (1981), Hashin (1983), Christensen (1990),
Nemat-Nasser and Hori (1993), and Kachanov (1992, 1994). In general, the effective moduli lie between the
predictions of the Mori-Tanaka method and the differential method. To assess the validity of these models,
some numerical calculations were recently carried out, which considered the mutual positions among many
spherical inhomogeneities or cracks. In the present study, cracked solids are considered.

For three-dimensional cracked solids, numerical calculations have not been reported. And for two-
dimensional cracked solids, several numerical results have been published where approximate numerical
models or boundary element methods were used to analyze some samples with many random cracks. It is
expected that the results for the 2-D case may be an indicator to understand the 3-D case. However, these
existing numerical results are not agreeable with each other for crack densities higher than 0.3.

Kachanov (1987) proposed a simple approximate method to analyze the problem of an infinite matrix
with a finite number of cracks, and derived expressions of effective moduli of solids with cracks that can
consider the mutual positions of cracks within a square sample. Then, Kachanov (1992) did a numerical
calculation for effective Young’s moduli of 2-D solids with random or parallel cracks. This is also the first
numerical calculation of effective moduli that accounts for the mutual positions of many cracks, such as 25
cracks in his calculation. The results are slightly higher than the predictions of the non-interacting solution.
Huang et al. (1994) pointed out that Kachanov’s numerical results actually neglected the interaction be-
tween cracks outside and inside the square sample based on the concept of an infinite cracked solid con-
sisting of doubly periodic blocks. They proposed an approximate method to improve the problem, in which
an extra layer of cracked solid with 200 cracks is added around the initial square sample with 25 cracks, and
calculated 15 samples to get the effective bulk modulus of solids with random cracks for crack density up to
about 0.5. Their results are close to the prediction of the generalized self-consistent method for high crack
densities. Furthermore, Huang et al. (1996) provided another numerical method to analyze an infinite
doubly periodic 2-D solid, in which the boundary element method was used to analyze a square unit cell
containing 25 randomly distributed cracks. Fifteen samples with random or parallel cracks for each crack
density of 0.1, 0.2, 0.4, and 0.6 were calculated. For random cracks, as the crack density increases, their
results vary from close to the differential method to close to the generalized self-consistent method. For
parallel cracks, their effective Young’s moduli keep the same trend, but their effective shear moduli are
agreeable with the differential method until crack density of 0.6. Renaud et al. (1996) proposed a boundary
element method to analyze 2-D cracked solids, which they called the displacement discontinuity method.
They calculated a rectangular cracked plate for each crack density up to about 0.3. The effective Young’s
modulus was taken as the mean value of the two computations done in the horizontal and vertical
directions. They also analyzed the case of random sizes of cracks varying between 1 and 10. Their results
are agreeable with the differential method, and the crack size effect is small. Zhan et al. (1999) proposed a
numerical method to analyze a finite plate with multiple cracks. They calculated 15 finite square samples
with 36 random or parallel cracks for each crack density from 0.1 to 0.35 to get the effective Young’s
moduli. Their results are close to the differential method for crack density up to 0.3 and become significant
higher than the differential method for 0.35. Shen and Yi (2000a,b, 2001) proposed a new energy balance
equation, which exactly relates the effective moduli to the strain energy change of an infinite body due to the
presence of a finite number of inhomogeneities in a circular or spherical region. The problem indicated by
Huang et al. (1994) was simply and exactly solved using this energy approach. Then, they calculated the
effective moduli by combining the approximate method (Kachanov, 1987) and their energy balance
equation. Fifty random cracks and 200 parallel cracks were considered in their calculations for crack
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density up to 0.6 (Shen and Yi, 2000b, 2001). Their results are close to those of Huang et al. (1996). Feng
et al. (2003) calculated effective Young’s moduli associated with random and parallel cracks up to crack
density of 1 based on the combination of the effective stress field approach and Kachanov’s method
(Kachanov, 1987). Their results for the random cracks lie between the non-interaction solution and the
differential method, but closer to the latter. And for the parallel cracks, their results are agreeable with the
differential method (Hashin, 1988).

It can be seen that these existing numerical results support the differential method for crack density less
than 0.3. But as the crack density increases from 0.3 to 0.6, these numerical results vary between the dif-
ferential method and the non-interacting solution. So it is not easy to assess which one is more accurate for
the case of high crack density. Actually, approximations and/or insufficiently large sample are involved in
the existing results. For example, the model by Huang et al. (1994) involves the assumption that the
interaction between cracks outside and inside a square sample was approximated as the interaction between
the cracks in a layer of cracked materials and the cracks inside the square sample. And the model by Shen
and Yi (2000b, 2001) adopted the approximate method by Kachanov (1987). The model by Feng et al.
(2003) adopted both the approximate method by Kachanov (1987) and an approximate effective far-field
stress. The validity of these approximations was not verified. The methods by Huang et al. (1996), Renaud
et al. (1996), and Zhan et al. (1999) do not involve assumptions, and should lead to agreeable results. One
possible reason for their discrepancies is that the sample size and/or number of cracks used are not sufficient
for the effective moduli to stabilize. Therefore, a careful and thorough study is of great interest for the
researchers in the field.

One of the purposes of the present paper is to complete this task, and the other is to investigate the effect
of crack distributions and sizes. It is noted that the focus of the present study is on the effective moduli, even
though the developed method is identically valid for the analysis of stress fields including intensity factors.

An outline of the paper is as follows. In Section 2, a formulation for the effective moduli is derived,
which includes a system of integral equations controlling the effective moduli, and a numerical method for
accurately solving the system of integral equations. In Section 3, plates with the four regular distributions of
cracks are calculated for one and two sizes of cracks. Some very interesting phenomena are revealed. For
example, the effective moduli do not gradually decrease to zero, but abruptly drop to zero in a very narrow
region near the maximum crack length. And the effective Young’s modulus becomes much larger, but the
effective shear one gets a little smaller due to the crack size effect for the rectangular distribution. In Section
4, plates with the two randomly distributed cracks are analyzed. The three crack sizes are considered. The
sample number and size at which the effective moduli can stabilize are analyzed first, and then the effective
moduli for the two random distributions with crack density up to 0.6 are numerically obtained. And in
Section 5, theoretical aspects of the effective moduli are analyzed, including the exact and explicit depen-
dence of the effective moduli on the matrix Poisson’s ratio and a summary of existing micromechanics
models and their comparison with the present and existing numerical results. Finally, a brief conclusion of
the present study is given in Section 6.

2. Formulation
2.1. Governing equations of effective moduli

2-D plane stress problems of cracked plates are considered in the study. Fig. 1(a) and (b) show a circular
sample of a cracked plate and a homogeneous circular plate with the same size that are embedded in an
infinite matrix, respectively. The infinite matrix is subjected to a uniform far-field stress tensor ¢>. Let
Afmicro and Aferecive denote the strain energy changes of the infinite matrix due to the presence of the
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Fig. 1. Schematic diagram for the energy balance equation that relates the effective moduli of cracked plates to the problem of an
infinite matrix with a finite number cracks in a circular sub-region.

circular sample and the homogeneous circular plate. The unknown elastic moduli of the homogeneous
circular plate are defined as the effective elastic moduli of the cracked plate through the equality as follows:

Af‘effective = Afmicro . ( 1 )

It is clear that if the circular sample is so large that the statistically uniform condition can be assumed,
the present definition is equivalent to the conventional one. It is noted that the equality was used as an
assumption by Shen and Yi (2000a,b, 2001). It can be easily seen that the circular sample does not have to
be circular, but the circular shape is the most convenient. Also, it should be mentioned that the configu-
ration of an infinite matrix containing a sample was assumed by Ju and Chen (1994), Nemat-Nasser and
Hori (1995), Ponte Castaneda and Willis (1995), Zheng and Du (2001) and Feng et al. (2003) directly or
indirectly. The novel aspect of the model by Shen and Yi (2000a,b, 2001) is that they skillfully assumed the
effective configuration of an infinite matrix containing a homogeneous sample. This simply relates the
effective moduli to the problem of an infinite matrix containing a finite number of inhomogeneities.

When the materials of the infinite matrix and plate matrix are assumed identical, Fig. 1(a) becomes the
problem of an infinite matrix containing N cracks. It is well-known that the strain energy change A fyicro can
be expressed in terms of the unknown displacement discontinuities b; of the N cracks across the crack lines
I; as follow:

o= [
Afmicro = 50' : ; \/_li 5(”:‘1’:'(9') + b;(c;)m;) dg;, (2)

where n; is a unit vector normal to the ith crack line, and [—/;, /;] is the region of the ith crack. As the unit
vector normal to the ith crack line n; is constant, (2) can be further reduced as

1 AR |
Afmicro = EO'DO : ; 4_11 [”i<bi> + <bi>”i]7 (3)

where (b;) = 3- ffz, b;(c;)dg; is the average displacement discontinuity of the ith crack.
Fig. 1(b) is the problem of an infinite matrix containing a homogeneous circular inclusion. The strain
energy change Aferecive €an be obtained according to Eshelby’s method (Eshelby, 1957):

1 _ _
Af;:ffccﬁvc = —EAO'OO : [Co : (C — Co) ! : C() + C() : So] ! . O'DO, (4)
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where C and C are the effective elastic stiffness tensor of the cracked plate and elastic stiffness tensor of the
plate matrix, 4 denotes the area of the circular sample, which also represents the corresponding sub-region
in terms of the context, and S is 2-D Eshelby’s tensor associated with Poisson’s ratio of the matrix and a
circular shape. Substituting (3) and (4) into (1) leads to the particular form as follows

_ _ 1 Mol
6 :[Co: (C—Cy) ' : Co+Cy: 8" 6™ = —0% ; 4—li[nl~<b,> + (b)m). (5)

To find the unknown average displacement discontinuities (b;), the problem of the infinite matrix
containing N cracks as shown in Fig. 1(a) needs to be solved, which can been represented as a superposition
of N problems, each involving only one crack but loaded by unknown tractions ¢;. The tractions ¢; are
controlled by a system of integral equations (e.g. Kachanov, 1987):

ﬂ+m2[ (65l 1(6)] + 07 (6 5[5 - ()] de . (6)

J#i

where t? = n; - 6>, n; and 7, are the unit normal and tangential vectors of the jth crack, and a';?(g,-7 ¢;) and
aj(;i, g;) are the stress tensors at a current point ¢; on the ith crack, generated by a pair of equal and
opposite unit forces located at a current point ¢; and along normal and tangential directions on the jth
crack. The fundamental solutions of one single crack problem, i.e., }(c;, ;) and 6}(c;, ¢;) are available (see
Muskhelishvili, 1963). Then, using the solution of the average displacement discontinuity due to a pair of
point forces located at ¢; (see Kachanov, 1994), (b;) can be linked with #; based on the superposition

principle as follows:

4l [

) =5 [ @l - @/ s, )
0 Jy

where E, is the Young’s modulus of the plate matrix. Therefore, (5)—(7) provide a system of equations

rigorously governing the effective elastic moduli C of a cracked plate.

2.2. A fast convergent numerical method for the system of integral equations

Kachanov’s approximate method simplifies the exact relations (6) and (7) as (t;) =" + >, ;A i ik - ()
and (b;) = ? (t;) (Kachanov, 1987). This approximate method is involved in the numerlcal results by Shen
and Yi (2000b 2001) and Feng et al. (2003). As the existing numerical results do not agree with each other,
it is necessary to check the accuracy of the approximate method. Therefore, several problems of an infinite
matrix containing 20 cracks in a circular sub-region are preliminarily analyzed using FEM and the
approximate method. The 20 cracks may be regularly or randomly distributed. The various crack densities
of the 20 cracks in the circular sub-region are considered. The comparisons show that when the cracks are
randomly distributed and crack density is not low, the approximate method may cause significant errors,
but when the cracks are regularly distributed, the errors caused by the approximate method is small. Fig.
2(a) and (b) show two examples of 20 random and parallel cracks in a circular region with crack density of
0.4 and 0.6, respectively. The strain energy changes Afuicro Of an infinite matrix due to the presence of these
cracks are obtained using the approximate method and FEM, which is relevant to the effective moduli. For
the random cracks, hydrostatic and pure shear far-field stresses are applied, and for the parallel cracks,
simple pull and pure shear far-field stresses are taken. For the FEM analysis, a sufficiently large square
matrix is used to replace the infinite matrix. After normalized by the corresponding ones using the non-
interacting approximation, the results of the strain energy changes Afmico based on the approximate
method are 0.648 and 0.861 for the random cracks, and 0.417 and 0.739 for the parallel cracks, while the
corresponding results using FEM are 0.731 and 1.05 for the random cracks, and 0.477 and 0.929 for the
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Fig. 2. Two examples of an infinite matrix with 20 random or parallel cracks in a circular sub-region, where the strain energy changes
Afmicro are solved using FEM to check the validity of the approximate method by Kachanov (1987).

parallel cracks. It is seen that the relative differences are about 10-20%. As a large number of calculations
for much more cracks are needed to get the effective moduli, a fast convergent numerical method is
developed here.

Equally dividing the region [—/;, /;] associated with the ith crack into M parts, and letting 7;({,) be the
average value of the unknown traction #;(¢;) over the pth sub-region [(,,{,,,] with p=1,2,..., M, then
using #;({,) to replace ;(¢;) in the right side of (6), it becomes

{pri _
) =1 +m-> E / (i cp)m; + a5(c;, ;) dg; - £i(g,). (8)
Sp

J#i p=1

Averaging the two sides of (8) over the gth sub-region [{,,{,.1] (¢ =1,2,...,M) leads to

—z+ZZDﬂ’ ( 9)

J#i p=0

with
e / / (6 5 + (6§40 (10)

Eq. (9) is a set of N x M vectorial linear algebraic equations for #;({,). After solving ;({,), t;(¢;) can be
obtained from (8). It is noted that when taking A = 1, the numerical method reduces to the approximate
method for ¢;(¢;) by Kachanov (1987). So, the present method can be thought as an extension of Kacha-
nov’s method. The feature of the method is that it carries out an iterate operation by taking #;({,) as initial
values. The problem of two collinear cracks is similarly taken as an example to show the convergent rate of
the numerical method. The two cracks occupy the regions [—k, —1] and [k, 1] on x axis following Kachanov
(1987). The stress intensities of the inner tip at locations —k or k are shown in Table 1 for various crack
spaces. It is seen that for M = 1, the results of Kachanov (1987) are recovered, and when £ is very small,
such as 0.005, the subdivision M = 5 is enough to make the relative error less than 1%. So the numerical
method of (8) and (9) has a very fast convergent rate. Also, the strain energy changes of two examples
shown in Fig. 2(a) and (b) are analyzed using the present numerical model of (3), (7)—(9). It is found that the
results based on subdivision M = 5 are agreeable with FEM calculations.
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Table 1

Normalized stress intensity factor Kj(k)/K? at the inner tip
Crack space k Ki(k)/K} using various subdivision number M Accurate

1 2 3 4 5

0.2 1.1120 1.1126 1.1126 1.1126 1.1126 1.1125
0.1 1.2510 1.2558 1.2561 1.2560 1.2558 1.2551
0.05 1.4525 1.4726 1.4758 1.4763 1.4761 1.4729
0.02 1.8085 1.8835 1.9046 1.9122 1.9151 1.9046
0.01 2.1337 2.2870 2.3423 2.3681 2.3813 2.3716
0.005 2.4936 2.7594 2.8739 2.9362 2.9736 2.9992

2.3. The procedure to numerically calculate effective moduli of a sample

Eqgs. (5), (7)—~(9) form an accurate numerical model to obtain the effective moduli. Two special types of
cracked plates are particularly of concern in the study. The first one is associated with isotropic properties
where the effective elastic stiffness tensor C can be characterized by the bulk and shear moduli K and G. As
shown in Fig. 3(a), (b) and (e), the random, equilateral triangular, and equilateral hexagonal distributions
correspond to this case. The second is associated with a special orthotropic property. As shown in Fig. 3(c),
(d) and (f), the parallel, diamond, and rectangular distributions correspond to the second case, where the
effective elastic stiffness tensor C can be characterized by the Young’s modulus normal to the crack
direction and shear modulus along the crack direction, i.e., E; and Gj,.

By applying the four far-field stress conditions, i.e., hydrostatic stress, pure shear, single pull, and pure
shear with magnitudes o3, 0%, 677, and o, respectively, the four effective moduli K, G, E, and G, can be
independently calculated by taking advantage of the independent forms of (5) as follows

1 K-k 11 1

o — — —G'DO: — |N; b,‘ + b[ n;|, 11
KKt dk—K) (opa’t 2 411'[ (b;) + (bi)ni] (11)
L_6-G 1 Lo xS L (12)
GO G0—|—1’](G—G0) (0%0)214 G - - 411 i\Oi i1,

LI T S W PSS o S S PO (13)
E() E0+6E(E_EO) (g%o)zA E * - 411 i\Vi /%],

L G, — Gy _ 1 laooii[n<b>+<b>n] (14)
G() G0+7’IG(G12 - GO) - (U%o)zA ¢ i=1 41’ o o

where & = (1 4+v)/2, n= (3 —vo)/4, & =5/8, ng = (3 —vy)/4, Ep and vy denote Young’s modulus and
Poisson’s ratio of the isotropic plate matrix, and K, and G, are 2-D bulk and shear moduli with
Ko/Eo/2(1 — vp) and Gy = Ey/2(1 + vp). The procedure to solve the effective modulus of a sample can be
described as follows:

(a) produce a sample containing N cracks;

(b) apply a far-field stress condition correspondingly;

(c) select an initial number of M, say 5;

(d) solve the system of N x M vectorial linear algebraic equations (9) to get #;(,);
(e) substitute the 7;({,) into (8) to get #,(¢;) and then (7) to get (b;);
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Fig. 3. The six types of distributions of cracks: (a) equilateral triangular, (b) equilateral hexagonal, (¢) diamond, (d) rectangular,
(e) random, and (f) parallel distributions.

(f) substitute the (b;) into the corresponding one of (11)—(14) to get an effective modulus of the sample;

(g) double the number M and return to (d), then go ahead to (f) to get another effective modulus of the
sample;

(h) if the relative difference of the two effective moduli is less than 0.01, the later one is taken as the effective
modulus of the sample, and the computation for the sample is stopped, otherwise return to (g).

For regular distributions of cracks, the effective moduli based on the procedure depend on the sample
size characterized by the crack number N. When the number N is sufficiently large, the effective moduli
stabilize. For random distributions of cracks, the computed effective moduli depend on the sample size and
sample number. When the crack number N and the sample number are sufficiently large, the effective
moduli stabilize. The determination of the crack number N and the sample number is given in the following
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sections. Poisson’s ratio of the plate matrix is taken to be zero for simplicity. It will be shown that the
results with other Poisson’s ratios can be exactly related to the results with Poisson’s ratio being zero. This
will be illustrated in Section 5.

3. Plates with regularly distributed cracks
3.1. Sample sizes

The crack density of a cracked plate is denoted as p, which is defined through a sufficiently large piece of
the cracked plate as follows,

1 N
=— P 15
p A;,, (15)

where A4, /; and N are the area of the piece, the half length of the ith crack and the number of cracks in-
cluded in the piece. For regular distributions, the crack density can be obtained based on a unit cell. As
shown in Fig. 3(a)—(d), the circular samples of plates with the four distributions of cracks are considered in
this study, which are the equilateral triangular, equilateral hexagonal, diamond, and rectangular distri-
butions. Their crack densities can be obtained as 2v/3/%, 2v/3/31%, I?/d, and I*/d, respectively, where [
denotes the half crack length, d is the distance between two crack rows for the diamond and rectangular
distributions, and the maximum crack length is taken as one unit. The circular samples are taken from a
large cracked plate by drawing a circle with a symmetric point as center and the length with some units as
radius. The circular samples contain those cracks only if their centers are inside the circle. The crack
densities of the circular samples based on (15) are different from those based on a unit cell. But as the
sample size increases, their difference approaches to zero.

As mentioned previously, the effective moduli vary with the sample size. The sample size can be char-
acterized by the crack number in the sample. Following the calculation procedure listed in Section 2.3, the
effective moduli are obtained for various sample sizes. It is found that the effective moduli can only stabilize
(compared to larger sample sizes, their relative differences are less than 0.01) when the crack number is very
large, say 500. The sample size with the number secures that the crack density based on (15) is agreeable
with the one based on a unit cell.

Theoretically, when the sample size becomes sufficiently large, the displacement field in the sample is
statistically uniform. So for the triangular and hexagonal distributions, the average displacement discon-
tinuity (b;) should be the same for all the cracks for the far-field hydrostatic stress condition, and there are
just two different values for all the average displacement discontinuity (b;) for the far-field pure shear
condition, depending on the relative angles to the far-field shear stresses. For the diamond and rectangular
distributions, the average displacement discontinuity (b;) should be the same for all the cracks under the
simple pull and pure shear far-field stress condition. Actually, it is observed in calculation examples that the
average displacement discontinuities of the cracks in the most outer layer are a little different from the inner
cracks, and as the sample increases, the difference decreases. Also, a useful observation is that the average
displacement discontinuities of the cracks in the center of the sample can stabilize at a small sample size.
Therefore, taking the advantage, the effective moduli for regular distributions of cracks can be easily
calculated based on relatively small samples.

3.2. Numerical results for the triangular and hexagonal distributions

Plates with these two distributions of cracks can be assumed isotropic due to the symmetry. Crack
lengths from 0 to 0.99, which correspond to the crack densities from 0 to 0.8660 for the triangular
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distribution and from 0 to 0.2887 for the hexagonal one are considered. The numerical results of the
effective bulk and shear moduli are obtained following the calculation procedure. The effective moduli are
also calculated using FEM to verify the present numerical model. These results are plotted in Fig. 4(a) and
(b). It is seen that the present numerical model is agreeable with FEM results. As expected, the hexagonal
distribution of cracks has much lower stiffness than the triangular one. Meanwhile, an interesting phe-
nomenon is seen for the two distributions, in which the effective moduli can remain rather high when the
crack length has reached 99% of its maximum length, which is called a boundary layer phenomenon.

Theoretically, the effective moduli must vanish at the maximum crack length. So they must drop to zero
in the narrow region [0.99, 1] of crack length variation. Based on the analysis, the curves of the effective
moduli corresponding to the crack length region [0.99, 1] are simply plotted by connecting the two end
values of the effective moduli at 0.99 and 1. The effective moduli within the region are not calculated in
detail due to the very slow convergence rate.

3.3. Numerical results for the diamond and rectangular distributions

Nemat-Nasser and Yu (1993) numerically calculated the effective moduli for the rectangular distribution
with the crack row distance being 0.25 based on a unit cell containing one crack. To compare with their
results, the crack row distance is also taken as 0.25 in the present calculation for the rectangular and
diamond distributions. Hence, the maximum crack densities are 1 for the two distributions when the crack
length reaches its maximum value 1. Similarly, the effective Young’s and shear moduli are calculated for
various crack lengths from 0 to 0.99 corresponding to crack density from 0 to 0.9801. The present results
together with those of Nemat-Nasser and Yu (1993) are plotted in Fig. 5(a) and (b). It is noted that the
results by Nemat-Nasser and Yu (1993) correspond to the case of plain strain problem with Poisson’s ratio
being 0.25. The results can be transformed to the present case, as illustrated in Section 5.

An interesting observation from the results in Fig. 5(a) and (b) is that, compared to the diamond dis-
tribution, the rectangular distribution has much higher effective Young’s modulus, but lower effective shear
modulus. Besides, it is seen that the present results are agreeable with those of Nemat-Nasser and Yu (1993)
for all the crack densities except 1. Nemat-Nasser and Yu (1993) claimed that the effective Young’s and
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Fig. 4. The effective bulk and shear moduli of the equilateral triangular and hexagonal distributions based on the present model and
finite element method (FEM).
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Fig. 5. The effective Young’s and shear moduli of the diamond and rectangular distributions based on the present model and com-
parison with the numerical results of Nemat-Nasser and Yu (1993).

shear moduli were found to be about 0.03 and 0.05 at the maximum crack length 1. As the effective moduli
must vanish at the crack length 1, they thought that the values of 0.03 and 0.05 might be the numerical error
of their numerical model. However, as their model cannot be valid for the limit case of crack length 1, they
had to get the values based on a limiting process of the crack length. It is assumed that the values of 0.03
and 0.05 were obtained using a crack length very close to 1, such as 0.999. As the boundary layer phe-
nomenon similarly exists, the small values may accurately correspond to the effective moduli with the crack
length 0.999.

Furthermore, the rectangle distribution with the same crack row distance being 0.25 is taken as an
example to see the effect of crack size. Two sizes of cracks are considered. The big and small cracks are
aligned column by column, and the distances between the crack centers keep the same as 1, as shown in Fig.
6. The three ratios of the big crack to the small one, i.e., 1, 5 and 10 are analyzed. The effective Young’s and
shear moduli versus crack density up to 0.6 are calculated and plotted in Fig. 6(a) and (b). It is interesting to
see that compared to the case of one sized cracks, effective Young’s modulus becomes much larger but
effective shear modulus becomes a little smaller due to the crack size effect.

4. Plates with randomly distributed cracks
4.1. The generation of a sample

To generate a sample, a random number generator which randomly and successively generates the
location of each crack is used to determine the centers of N cracks for parallel cracks, and the centers and
orientations for random cracks in a circular region. When the location of a new crack is determined using
one (the case of parallel cracks) or two (the case of random cracks) random numbers, the crack is checked if
it overlaps with any of the previously generated cracks. If it overlaps with a previous crack, it needs to be
regenerated using other random numbers. Deferent from the existing generation of cracks where the
spacing between cracks is kept no smaller than 0.02 (Kachanov, 1992; Shen and Yi, 2001), the present
calculation does not require the smallest spacing. The crack number, crack length and the radius of the
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Fig. 6. The crack size effect on the effective moduli for the rectangular distribution.

circular region are given so that a crack density can be obtained. For two crack sizes, the big cracks are
generated first. For random crack sizes, it is assumed that the crack sizes range from 1 to 10. A set of crack
sizes are randomly determined first, and then the cracks with the crack sizes are randomly distributed in a
circular region in the order from big to small cracks.

Once a sample is generated, its effective moduli can be calculated following the calculation procedure
described in Section 2.3. However, for the random case, the effective moduli depend on samples. They can
stabilize when sample size and number are sufficiently large. But how large a sample and how many samples
for each sample size should be used to get the stabilized average value are not clear. Some existing cal-
culations simply took 10 or 15 samples and 25, 36 or 50 cracks in each sample. However, the detailed
analysis has not been done. Actually, those sample sizes are not sufficiently large, as shown in the following
section.

4.2. Sample size and number at which effective moduli stabilize

The sample size and sample number at which the effective moduli can stabilize may vary with crack
densities. So, the crack densities 0.1 and 0.6 are taken to carry out the study in details. The crack numbers
from 50 to 500 and the sample numbers from 10 to 40 are considered. Figs. 7 and 8 plotted the results of
effective moduli based on the various sample sizes. For each sample size, 20 samples are calculated. So, it is
seen from these results that (a) the higher the crack density is, the larger the sample size that is required for
the effective moduli to stabilize. For example, 50 and 300 cracks are suitable for crack density being 0.1 and
0.6; (b) The sample size has less effect on the effective shear modulus than on the bulk or Young’s modulus
for the high crack density 0.6; (c) for a sample size, the higher crack density shows a larger scatter of the
effective moduli.

To check if 20 samples are sufficient for each sample size, the effect of sample number is analyzed.
Fig. 9 shows the results of the effective bulk and Young’s moduli for the random and parallel cracks
with the crack density 0.6 and the sample size of 50 cracks. It is seen that 10-20 samples can be suffi-
cient.
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Fig. 7. The effect of sample size on the effective moduli for the random distribution of cracks with the low and high crack densities.

4.3. One, two and random sizes of cracks

Based on the analyses of the effect of sample size and number, 20 samples are taken for each case of the
present calculations. For the one sized cracks, six sample sizes with crack number from 50 to 300 are taken
for the six crack densities from 0.1 to 0.6. For the two sizes of cracks, the two ratios of the big and small
cracks, i.e., 5 and 10 are considered. The crack densities of the big and small cracks are taken to be the
same. So the number of the small cracks is 25 and 100 times as many as the big cracks for the two ratios of
crack sizes. Therefore, 1300 cracks including 50 big cracks and 1250 small ones for the ratio 5, and 5050
cracks including 50 big cracks and 5000 small ones for the ratio 10 are considered in each sample. For the
random sizes of cracks, the sample size of 2000 cracks is used. Then, the effective moduli of each sample are
calculated following the calculation procedure. The average values are used to plot Fig. 10(a)—(d). It is seen
that the crack size effect can decrease the effective moduli by about 10-30% for crack density 0.6. The effect
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Fig. 8. The effect of sample size on the effective moduli for the parallel distribution of cracks with the low and high crack densities.

on the effective shear moduli is relatively less than that on the effective bulk and Young’s moduli.
In general, the effect of crack size can be significant for very high crack density, such as higher than
0.4.

5. Micromechanics analysis of effective moduli
5.1. Explicit and exact dependence of effective moduli on E, and v,
Since the fundamental solutions 6’ (c;, ¢;) and 67(c;, ¢;) used in (6) are independent of Young’s modulus

Ey and Poisson’s ration v, of the plate matrix, it can be seen from (3), (6) and (7) that the strain energy
change Afnico 18 independent of vy and is expressed as

1
A micro — —A o ) 16
f E, f micro ( )
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Fig. 9. The effect of sample number on the effective moduli for the random and parallel distributions of cracks with crack density 0.6.

where Af°. is the strain energy change associated with a plate matrix with unit Young’s modulus, which is

also independent of vy. By taking a unit area of circular sample, the right side of (11)—(14) can be expressed
as E—fA /oo Where A is only associated with the geometry information of the cracks contained in the
circular samples and the types of the far-field stress conditions. Therefore, K and G, and E; and G, can be

derived as

K 1 Afrgicro

FO_ 1/<1+(1 _VO) _%Afr?]icm)7 (17)

E _ 1 + 1 Af;gicro (18)

GO B (1 + V()) 1 _%A r?licro ’

E, 2Afr?1icr0

Ey /<1+1—3Af°v ’ v
4 =/ micro

G 1 AfO.

iz 1 micro ) 20

GO /< - (1 + VO) 1 - %A Slicro ( )

It is noticed that Af?.  is dependent of the types of the far-field stress conditions and the geometry of
cracks. So, Af2. . in the four expressions (17)-(20) may be different. It is known that Cherkaev et al. (1992)
derived the stress invariance and shift characteristics of effective compliance in planar elasticity, which is
also referred to as the CLM theorem. Zheng and Hwang (1996) derived more general shift characteristics of
effective compliance for two-dimensional composites, and Hu and Weng (2001) gave a new derivative on
the shift property, and obtained some new results for three-dimensional composites. For the current special
case of cracks, the present expressions are agreeable with the shift characteristics of effective compliance by
these researchers. But the present derivation is simple and direct, and the physical meaning of the
expressions is clear. Using the expressions (17)—(20), the effective moduli associated with two matrix
Poisson’s ratios can be related each other. So, all the numerical calculations are carried out for the matrix
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Fig. 10. The effect of crack sizes on the effective moduli for the random and parallel distributions.

Poisson’s ratio being 0. The effective moduli with other matrix Poisson’s ratio can be correspondingly
derived.

5.2. Micromechanics models

Some existing micromechanics models, including the non-interacting solution, the differential method,
the generalized non-interacting solution and the generalized self-consistent method are compared with the
present numerical results. For convenience, these models are briefly summarized as follows.

For the random and parallel cracks, the non-interacting solutions (e.g., Kachanov, 1992) are

(1)
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%:1/(14—271/)) and %:1/(1+(11pv0))' (22)

The differential method for the two types of cracks leads to (e.g., Norris, 1985; Zimmerman, 1985;
Hashin, 1988; Huang et al., 1996)

and

%:1/<1+ﬁ(ew—1)) and G%:l/(”(lTlvo)@“ﬂ‘l))’ (23)
and
%:l/(l+np/2)4 and GG—lOzl/(l+ﬁ<np+%2pz)). (24)

It is noticed that (24) are derived from the one associated with a general orthotropic matrix by Hashin
(1988), which is a little higher that the closed form solution by Huang et al. (1996). It is also noticed that the
plot of Huang et al. (1996) did not follow their closed form solution. However, the plots of the differential
method by Zhan et al. (1999) and Feng et al. (2003) seem to follow the closed form solution by Huang et al.
(1996).

The generalized self-consistent method for the random cracks gives (Huang et al., 1994)

E G o
— =1/ +nap+De(v)p*) and —=1/(1+—"—+Dgs(v 2), 25
5 =1/ Wt m D0 and & =1/ (14 Dol 03)
where Dg(vy) = 1.17, 1.12 and 1.02 and Dg(vy) = 0.93, 0.78 and 0.61 for the Poisson’s ratio of the matrix
being 0.2, 0.3 and 0.4 and the case of plain strain.

Besides, it is worth mentioning the generalized non-interacting solution (Shen and Yi, 2000a, 2001). For
the case of 2-D cracks, it gives

K 1 P G 1 np

21/ o d 2=1/|14—— TP 26
Ko /( +(l—vo) 1%%,0) an Go /( +(1+v0) 1;{np>’ (26)
E1 27'L'p G12 1 o

—=1 1 d —==1 1 . 27
Ey /( +1—%7Ip> an Gy /( Jr(1—1—\)0) 1—imp (27)

It is noticed that Ponte Castaneda and Willis (1995) derived the estimates of Hashin—Shtrikman type,
which coincide with the generalized non-interacting solution for general ellipsoidal inhomogeneities by
Shen and Yi (2001). For the case of circular or spherical inhomogeneities, the generalized non-interacting
solution coincides with the Mori-Tanaka solution. And for the present case of cracks, the generalized non-
interacting solution becomes (26) and (27). It is known that the generalized non-interacting solution is
derived using the non-interacting approximation to obtain the strain energy change Afpico. S0, it has the
same simplicity as the conventional non-interacting solution, while it seems to have rather higher accuracy.
The underlying reason causing the difference between the two non-interacting solutions is that the gen-
eralized non-interacting solution only neglects the interactions among inhomogeneities, but the conven-
tional one neglect both the interactions among inhomogeneities and the interactions between
inhomogeneities and the boundary of a representative sample (see Shen and Yi, 2001). Also, it is noticed
some other micromechanics models such as the model by Feng and Yu (2000) and the interactive direct-
derivation (IDD) method by Zheng and Du (2001). The model by Feng and Yu (2000) are close to the
differential method, and the IDD method by Zheng and Du (2001) coincides with the generalized non-
interacting solution when crack density is less than 1/z. In general, all these micromechanics methods are
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exact at the first-order according to the Taylor series of crack density, but approximate at the second-order
term, as pointed out by many researchers (e.g., Budiansky and O’Connell, 1976; Zimmerman, 1991). So,
comparison with the present numerical results may determine which one can provide the optimum esti-
mation of the effective moduli of cracked plates with general crack densities.

5.3. Comparison of micromechanics models, existing and present numerical results

The predictions of micromechanics models (21)—(27), the existing numerical results and the present
numerical results for the case of one sized cracks are plotted in Figs. 11 and 12. It is seen from Fig. 11(a)—(d)
that the differential method can provide the optimum estimation of the effective moduli of cracked plates
with general crack densities though the relative difference is still significant for crack density higher than
0.4. It is noted that the numerical results associated with identical sized cracks are used to compare with the
micromechanics models. However, it is seen from the comparison of Figs. 10 and 11 that the numerical
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Fig. 11. The comparison of some micromechanics models and the present numerical results associated with one sized cracks.
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Fig. 12. (a) and (b) For the effective Young’s moduli associated with the random and parallel cracks evaluated by various models, (c)
and (d) for a comparison of the effective Young’s moduli associated with the random and regular distributions of cracks.

results associated with the random sizes of cracks are very close to the predictions of the differential
method. The present numerical results about the effect of crack size provide a support to the assertion by
Salganik (1973) on the application of the differential method to cracked bodies. He stated that the differ-
ential method should be expected to be more accurate as the size distribution becomes broader.

It is noticed that there are no estimations for the parallel cracks using the generalized self-consistent
method, and Dg(vy) and Dg(vy) in (25) for the random cracks do not obey the rule of the dependence of
effective moduli on the Poisson’s ratio described in (17)-(20). Theoretically, Dz (vo) should not depend on
the Poisson’s ratio, as shown in (19). So the effective Young’s modulus based on the generalized self-
consistent method is plotted in Fig. 12, where the average value of the three Dx(vy) given by Huang et al.
(1994) is assumed.
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For the random and parallel cracks, Fig. 12(a) and (b) show the effective Young’s moduli predicted by
the existing numerical calculations, the present numerical results and the micromechanics models. It is
noted that the effective Young’s moduli for the random distribution are derived from the corresponding
effective bulk and shear moduli when they are not directly given, such as the results by Huang et al. (1996),
Shen and Yi (2000b) and the present calculation. When the crack density is lower than 0.3, all the numerical
results are close to the predictions of the differential method. So, the numerical results by Renaud et al.
(1996) and Zhan et al. (1999) are not plotted in the figures for clarity, as they only analyzed the crack
density up to 0.3 and 0.35. However, it is noticed that the results by Zhan et al. (1999) for crack density of
0.35 are significantly larger than the predictions of the differential method. When the crack density becomes
larger than 0.3, the differences among these existing numerical results are significant.

It is seen from Fig. 12(a) and (b) that all the numerical results vary between the differential method and
the non-interacting solution. It has been mentioned previously that the numerical results of the effective
moduli of 2-D cracked solids by Shen and Yi (2000b, 2001) actually involve the approximation of Ka-
chanov’s method (Kachanov, 1987). Besides, the sample sizes are also not sufficiently large. Thus, it can be
thought that the assumptions and the insufficiently large sample size are the reasons that cause the effective
moduli significantly larger than the present ones. Huang et al. (1996) obtained the effective moduli based on
unit cells with 25 random or parallel cracks for the crack density up to 0.6. It is seen from Fig. 12(a) and (b)
that Huang et al. (1996) are also significantly larger than the present ones. Huang et al. (1996) claimed that
the results based on 50 cracks were compared. However, the effect of sample size on the effective moduli in
Figs. 6 and 7 shows that when samples are not sufficiently large, the effective moduli tend to become larger
for the high crack densities. So it is believed that their sample sizes may not be sufficiently large for the
crack densities larger than 0.3. It is also seen from Fig. 12(a) and (b) that the numerical results by Feng et
al. (2003) are relatively closer to the present ones. However, it has been checked that Kachanov’s method
causes the strain energy change Afpnico to become smaller, which causes the effective moduli to become
significantly larger. So it is believed that the effect of other approximations involved in the calculations by
Feng et al. (2003) may partially cancel with the effect of Kachanov’s approximate method.

Fig. 12(c) and (d) shows a comparison between the plates with random and regular cracks. It is inter-
esting to see that when the crack density is lower than 0.15, the effective Young’s moduli associated with the
random cracks and the hexagonally distributed cracks are agreeable with each other, while the parallel
cracks and the cracks with the diamond distribution lead to the similar results. As the two regular dis-
tributions of cracks make the Young’s moduli of the plates to decay severely, it seems that the amplifying
effect of the interaction among randomly distributed cracks is dominant. Actually, as far as the two cases
with the crack density being less than 0.15 are considered, the agreement between the generalized non-
interacting solution and the present numerical results confirms that the amplifying and shielding effects
among randomly distributed cracks on the effective Young’s moduli happen to cancel each other. However,
the competition of the amplifying and shielding effects of the multiple crack interaction on the effective
moduli depends on the far-field stress case, the crack distribution and density. A general and clear con-
clusion has not been achieved, even though many researchers have considered the problem.

6. Conclusion

An accurate numerical model is proposed to calculate the effective moduli of plates with various dis-
tributions and sizes of cracks. The six types of crack distributions and three crack sizes are considered.
Some conclusions are summarized as follows.

The comparison with FEM calculations confirms the validity of the proposed numerical model. The
calculations for the regular distributions show very interesting results, such as the boundary layer phe-
nomenon and the different effects of the rectangular and diamond distributions on the effective Young’s and
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shear moduli. For the random and parallel cracks, it is found that when the crack density becomes higher, a
larger sample size is required to get stabilized effective moduli, and the sample number 10-20 may be
sufficient to get stabilized average values. Among the micromechanics models, the differential method can
provide the optimum estimation of the effective moduli. However, the relative differences between the
differential method and the present numerical results associated with identically sized cracks are still sig-
nificant for the crack densities higher than 0.4. But the numerical results associated with the random sizes of
cracks are very close to the predictions of the differential method. The effective moduli associated with the
regular distributions of cracks may be more sensitive to the crack sizes than those of the random distri-
butions. Also, it is seen that the effective moduli decrease as the size distribution of the cracks gets broader.
This provides a support to the assertion by Salganik (1973), who stated that the differential method should
be expected to be more accurate as the size distribution becomes broader.
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