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Abstract

A fast convergent numerical model is developed to calculate the effective moduli of plates with various distributions

and sizes of cracks, in which the crack line is divided into M parts to obtain the unknown traction on the crack line.

When M ¼ 1, the model reduces to Kachanov’s approximation method [Int. J. Solids Struct. 23 (1987) 23]. Six types of

crack distributions and three kinds of crack sizes are considered, which are four regular (equilateral triangle, equilateral

hexagon, rectangle, and diamond) and two random distributions (random location and orientation, and parallel ori-

entation and random location), and one, two and random crack sizes. Some typical examples are also analyzed using

the finite element method (FEM) to validate the present model. Then, the effective moduli associated with the crack

distributions and sizes are calculated in detail. The present results for the regular distributions show some very

interesting phenomena that have not been revealed before. And for the two random distributions, as the effective

moduli depend on samples due to the randomness, the effect of the sample size and number are analyzed first. Then,

effective moduli for plates with the three sizes of cracks are calculated. It is found that the effect of crack sizes on the

effective moduli is significant for high crack densities, and small for low crack densities, and the random crack size leads

to the lowest effective moduli. The present numerical results are compared with several popular micromechanics models

to determine which one can provide the optimum estimation of the effective moduli of cracked plates with general crack

densities. Furthermore, some existing numerical results are analyzed and discussed.
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1. Introduction

The effective elastic moduli of heterogeneous materials have been extensively studied in the past decades.

The well-known micromechanics models include the non-interacting solution, the self-consistent method

(e.g. Hill, 1965; Budiansky and O’Connell, 1976; Hoenig, 1979; Laws and Brockenbrough, 1987; Laws and

Dvorak, 1987), the generalized self-consistent method (e.g. Christensen and Lo, 1979; Huang et al., 1994),
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the differential method (e.g., Salganik, 1973; Norris, 1985; Zimmerman, 1985, 1991; Hashin, 1988), and the

Mori–Tanaka method (Mori and Tanaka, 1973; Weng, 1984, 1990), among others. For cracked solids, the

Mori–Tanaka method coincides with the non-interacting solution (Benveniste, 1986). These microme-

chanics models usually simplify the complex geometry of the matrix with randomly distributed inhomo-
geneities into the problem of a homogeneous media with only one inhomogeneity. The micromechanics

models have been reviewed by many researchers, such as Willis (1981), Hashin (1983), Christensen (1990),

Nemat-Nasser and Hori (1993), and Kachanov (1992, 1994). In general, the effective moduli lie between the

predictions of the Mori–Tanaka method and the differential method. To assess the validity of these models,

some numerical calculations were recently carried out, which considered the mutual positions among many

spherical inhomogeneities or cracks. In the present study, cracked solids are considered.

For three-dimensional cracked solids, numerical calculations have not been reported. And for two-

dimensional cracked solids, several numerical results have been published where approximate numerical
models or boundary element methods were used to analyze some samples with many random cracks. It is

expected that the results for the 2-D case may be an indicator to understand the 3-D case. However, these

existing numerical results are not agreeable with each other for crack densities higher than 0.3.

Kachanov (1987) proposed a simple approximate method to analyze the problem of an infinite matrix

with a finite number of cracks, and derived expressions of effective moduli of solids with cracks that can

consider the mutual positions of cracks within a square sample. Then, Kachanov (1992) did a numerical

calculation for effective Young’s moduli of 2-D solids with random or parallel cracks. This is also the first

numerical calculation of effective moduli that accounts for the mutual positions of many cracks, such as 25
cracks in his calculation. The results are slightly higher than the predictions of the non-interacting solution.

Huang et al. (1994) pointed out that Kachanov’s numerical results actually neglected the interaction be-

tween cracks outside and inside the square sample based on the concept of an infinite cracked solid con-

sisting of doubly periodic blocks. They proposed an approximate method to improve the problem, in which

an extra layer of cracked solid with 200 cracks is added around the initial square sample with 25 cracks, and

calculated 15 samples to get the effective bulk modulus of solids with random cracks for crack density up to

about 0.5. Their results are close to the prediction of the generalized self-consistent method for high crack

densities. Furthermore, Huang et al. (1996) provided another numerical method to analyze an infinite
doubly periodic 2-D solid, in which the boundary element method was used to analyze a square unit cell

containing 25 randomly distributed cracks. Fifteen samples with random or parallel cracks for each crack

density of 0.1, 0.2, 0.4, and 0.6 were calculated. For random cracks, as the crack density increases, their

results vary from close to the differential method to close to the generalized self-consistent method. For

parallel cracks, their effective Young’s moduli keep the same trend, but their effective shear moduli are

agreeable with the differential method until crack density of 0.6. Renaud et al. (1996) proposed a boundary

element method to analyze 2-D cracked solids, which they called the displacement discontinuity method.

They calculated a rectangular cracked plate for each crack density up to about 0.3. The effective Young’s
modulus was taken as the mean value of the two computations done in the horizontal and vertical

directions. They also analyzed the case of random sizes of cracks varying between 1 and 10. Their results

are agreeable with the differential method, and the crack size effect is small. Zhan et al. (1999) proposed a

numerical method to analyze a finite plate with multiple cracks. They calculated 15 finite square samples

with 36 random or parallel cracks for each crack density from 0.1 to 0.35 to get the effective Young’s

moduli. Their results are close to the differential method for crack density up to 0.3 and become significant

higher than the differential method for 0.35. Shen and Yi (2000a,b, 2001) proposed a new energy balance

equation, which exactly relates the effective moduli to the strain energy change of an infinite body due to the
presence of a finite number of inhomogeneities in a circular or spherical region. The problem indicated by

Huang et al. (1994) was simply and exactly solved using this energy approach. Then, they calculated the

effective moduli by combining the approximate method (Kachanov, 1987) and their energy balance

equation. Fifty random cracks and 200 parallel cracks were considered in their calculations for crack
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density up to 0.6 (Shen and Yi, 2000b, 2001). Their results are close to those of Huang et al. (1996). Feng

et al. (2003) calculated effective Young’s moduli associated with random and parallel cracks up to crack

density of 1 based on the combination of the effective stress field approach and Kachanov’s method

(Kachanov, 1987). Their results for the random cracks lie between the non-interaction solution and the
differential method, but closer to the latter. And for the parallel cracks, their results are agreeable with the

differential method (Hashin, 1988).

It can be seen that these existing numerical results support the differential method for crack density less

than 0.3. But as the crack density increases from 0.3 to 0.6, these numerical results vary between the dif-

ferential method and the non-interacting solution. So it is not easy to assess which one is more accurate for

the case of high crack density. Actually, approximations and/or insufficiently large sample are involved in

the existing results. For example, the model by Huang et al. (1994) involves the assumption that the

interaction between cracks outside and inside a square sample was approximated as the interaction between
the cracks in a layer of cracked materials and the cracks inside the square sample. And the model by Shen

and Yi (2000b, 2001) adopted the approximate method by Kachanov (1987). The model by Feng et al.

(2003) adopted both the approximate method by Kachanov (1987) and an approximate effective far-field

stress. The validity of these approximations was not verified. The methods by Huang et al. (1996), Renaud

et al. (1996), and Zhan et al. (1999) do not involve assumptions, and should lead to agreeable results. One

possible reason for their discrepancies is that the sample size and/or number of cracks used are not sufficient

for the effective moduli to stabilize. Therefore, a careful and thorough study is of great interest for the

researchers in the field.
One of the purposes of the present paper is to complete this task, and the other is to investigate the effect

of crack distributions and sizes. It is noted that the focus of the present study is on the effective moduli, even

though the developed method is identically valid for the analysis of stress fields including intensity factors.

An outline of the paper is as follows. In Section 2, a formulation for the effective moduli is derived,

which includes a system of integral equations controlling the effective moduli, and a numerical method for

accurately solving the system of integral equations. In Section 3, plates with the four regular distributions of

cracks are calculated for one and two sizes of cracks. Some very interesting phenomena are revealed. For

example, the effective moduli do not gradually decrease to zero, but abruptly drop to zero in a very narrow
region near the maximum crack length. And the effective Young’s modulus becomes much larger, but the

effective shear one gets a little smaller due to the crack size effect for the rectangular distribution. In Section

4, plates with the two randomly distributed cracks are analyzed. The three crack sizes are considered. The

sample number and size at which the effective moduli can stabilize are analyzed first, and then the effective

moduli for the two random distributions with crack density up to 0.6 are numerically obtained. And in

Section 5, theoretical aspects of the effective moduli are analyzed, including the exact and explicit depen-

dence of the effective moduli on the matrix Poisson’s ratio and a summary of existing micromechanics

models and their comparison with the present and existing numerical results. Finally, a brief conclusion of
the present study is given in Section 6.
2. Formulation

2.1. Governing equations of effective moduli

2-D plane stress problems of cracked plates are considered in the study. Fig. 1(a) and (b) show a circular

sample of a cracked plate and a homogeneous circular plate with the same size that are embedded in an

infinite matrix, respectively. The infinite matrix is subjected to a uniform far-field stress tensor r1. Let

Dfmicro and Dfeffective denote the strain energy changes of the infinite matrix due to the presence of the



Fig. 1. Schematic diagram for the energy balance equation that relates the effective moduli of cracked plates to the problem of an

infinite matrix with a finite number cracks in a circular sub-region.
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circular sample and the homogeneous circular plate. The unknown elastic moduli of the homogeneous

circular plate are defined as the effective elastic moduli of the cracked plate through the equality as follows:
Dfeffective ¼ Dfmicro: ð1Þ

It is clear that if the circular sample is so large that the statistically uniform condition can be assumed,

the present definition is equivalent to the conventional one. It is noted that the equality was used as an

assumption by Shen and Yi (2000a,b, 2001). It can be easily seen that the circular sample does not have to

be circular, but the circular shape is the most convenient. Also, it should be mentioned that the configu-

ration of an infinite matrix containing a sample was assumed by Ju and Chen (1994), Nemat-Nasser and
Hori (1995), Ponte Casta~neda and Willis (1995), Zheng and Du (2001) and Feng et al. (2003) directly or

indirectly. The novel aspect of the model by Shen and Yi (2000a,b, 2001) is that they skillfully assumed the

effective configuration of an infinite matrix containing a homogeneous sample. This simply relates the

effective moduli to the problem of an infinite matrix containing a finite number of inhomogeneities.

When the materials of the infinite matrix and plate matrix are assumed identical, Fig. 1(a) becomes the

problem of an infinite matrix containing N cracks. It is well-known that the strain energy change Dfmicro can

be expressed in terms of the unknown displacement discontinuities bi of the N cracks across the crack lines

li as follow:
Dfmicro ¼
1

2
r1 :

XN
i¼1

Z li

�li

1

2
ðnibið1iÞ þ bið1iÞniÞd1i; ð2Þ
where ni is a unit vector normal to the ith crack line, and ½�li; li� is the region of the ith crack. As the unit

vector normal to the ith crack line ni is constant, (2) can be further reduced as
Dfmicro ¼
1

2
r1 :

XN
i¼1

1

4li
½nihbii þ hbiini�; ð3Þ
where hbii ¼ 1
2li

R li
�li

bið1iÞd1i is the average displacement discontinuity of the ith crack.

Fig. 1(b) is the problem of an infinite matrix containing a homogeneous circular inclusion. The strain

energy change Dfeffective can be obtained according to Eshelby’s method (Eshelby, 1957):
Dfeffective ¼ � 1

2
Ar1 : ½C0 : ðC � C0Þ�1 : C0 þ C0 : S0��1 : r1; ð4Þ
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where C and C0 are the effective elastic stiffness tensor of the cracked plate and elastic stiffness tensor of the

plate matrix, A denotes the area of the circular sample, which also represents the corresponding sub-region

in terms of the context, and S0 is 2-D Eshelby’s tensor associated with Poisson’s ratio of the matrix and a

circular shape. Substituting (3) and (4) into (1) leads to the particular form as follows
r1 : ½C0 : ðC � C0Þ�1
: C0 þ C0 : S0��1

: r1 ¼ � 1

A
r1 :

XN
i¼1

1

4li
½nihbii þ hbiini�: ð5Þ
To find the unknown average displacement discontinuities hbii, the problem of the infinite matrix

containing N cracks as shown in Fig. 1(a) needs to be solved, which can been represented as a superposition

of N problems, each involving only one crack but loaded by unknown tractions ti. The tractions ti are
controlled by a system of integral equations (e.g. Kachanov, 1987):
tið1iÞ ¼ t0i þ ni �
X
j 6¼i

Z lj

�lj

rn
j ð1i; 1jÞ½nj � tjð1jÞ� þ rs

jð1i; 1jÞ½sj � tjð1jÞ�d1j; ð6Þ
where t0i ¼ ni � r1, nj and sj are the unit normal and tangential vectors of the jth crack, and rn
j ð1i; 1jÞ and

rs
jð1i; 1jÞ are the stress tensors at a current point 1i on the ith crack, generated by a pair of equal and

opposite unit forces located at a current point 1j and along normal and tangential directions on the jth
crack. The fundamental solutions of one single crack problem, i.e., rn

j ð1i; 1jÞ and rs
jð1i; 1jÞ are available (see

Muskhelishvili, 1963). Then, using the solution of the average displacement discontinuity due to a pair of
point forces located at 1i (see Kachanov, 1994), hbii can be linked with ti based on the superposition

principle as follows:
hbii ¼
4li
E0

Z li

�li

tið1iÞ½1� ð1i=liÞ2�1=2 d1i; ð7Þ
where E0 is the Young’s modulus of the plate matrix. Therefore, (5)–(7) provide a system of equations

rigorously governing the effective elastic moduli C of a cracked plate.

2.2. A fast convergent numerical method for the system of integral equations

Kachanov’s approximate method simplifies the exact relations (6) and (7) as htii ¼ t0i þ
P

k 6¼i Kik � htki
and hbii ¼ pli

E0
htii (Kachanov, 1987). This approximate method is involved in the numerical results by Shen

and Yi (2000b, 2001) and Feng et al. (2003). As the existing numerical results do not agree with each other,

it is necessary to check the accuracy of the approximate method. Therefore, several problems of an infinite

matrix containing 20 cracks in a circular sub-region are preliminarily analyzed using FEM and the

approximate method. The 20 cracks may be regularly or randomly distributed. The various crack densities

of the 20 cracks in the circular sub-region are considered. The comparisons show that when the cracks are

randomly distributed and crack density is not low, the approximate method may cause significant errors,
but when the cracks are regularly distributed, the errors caused by the approximate method is small. Fig.

2(a) and (b) show two examples of 20 random and parallel cracks in a circular region with crack density of

0.4 and 0.6, respectively. The strain energy changes Dfmicro of an infinite matrix due to the presence of these

cracks are obtained using the approximate method and FEM, which is relevant to the effective moduli. For

the random cracks, hydrostatic and pure shear far-field stresses are applied, and for the parallel cracks,

simple pull and pure shear far-field stresses are taken. For the FEM analysis, a sufficiently large square

matrix is used to replace the infinite matrix. After normalized by the corresponding ones using the non-

interacting approximation, the results of the strain energy changes Dfmicro based on the approximate
method are 0.648 and 0.861 for the random cracks, and 0.417 and 0.739 for the parallel cracks, while the

corresponding results using FEM are 0.731 and 1.05 for the random cracks, and 0.477 and 0.929 for the



Fig. 2. Two examples of an infinite matrix with 20 random or parallel cracks in a circular sub-region, where the strain energy changes

Dfmicro are solved using FEM to check the validity of the approximate method by Kachanov (1987).

7476 L. Shen, J. Li / International Journal of Solids and Structures 41 (2004) 7471–7492
parallel cracks. It is seen that the relative differences are about 10–20%. As a large number of calculations

for much more cracks are needed to get the effective moduli, a fast convergent numerical method is

developed here.

Equally dividing the region ½�li; li� associated with the ith crack into M parts, and letting �tiðfpÞ be the
average value of the unknown traction tið1iÞ over the pth sub-region ½fp; fpþ1� with p ¼ 1; 2; . . . ;M , then

using �tiðfpÞ to replace tið1iÞ in the right side of (6), it becomes
tið1iÞ ¼ t0i þ ni �
X
j 6¼i

XM
p¼1

Z fpþ1

fp

rn
j ð1i; 1jÞnj þ rs

jð1i; 1jÞsj d1j � �tið1pÞ: ð8Þ
Averaging the two sides of (8) over the qth sub-region ½fq; fqþ1� ðq ¼ 1; 2; . . . ;MÞ leads to
�tiðfqÞ ¼ t0i þ
X
j 6¼i

XM
p¼0

Djp
iq � �tjðfpÞ ð9Þ
with
Djp
iq ¼ 1

fqþ1 � fq

Z fqþ1

fq

Z fpþ1

fp

ni � ½rn
j ðfi; fjÞnj þ rs

jðfi; fjÞsj�dfj dfi: ð10Þ
Eq. (9) is a set of N �M vectorial linear algebraic equations for �tiðfpÞ. After solving �tiðfpÞ, tið1iÞ can be

obtained from (8). It is noted that when taking M ¼ 1, the numerical method reduces to the approximate

method for tið1iÞ by Kachanov (1987). So, the present method can be thought as an extension of Kacha-
nov’s method. The feature of the method is that it carries out an iterate operation by taking �tiðfpÞ as initial
values. The problem of two collinear cracks is similarly taken as an example to show the convergent rate of

the numerical method. The two cracks occupy the regions ½�k;�1� and ½k; 1� on x axis following Kachanov

(1987). The stress intensities of the inner tip at locations �k or k are shown in Table 1 for various crack

spaces. It is seen that for M ¼ 1, the results of Kachanov (1987) are recovered, and when k is very small,

such as 0.005, the subdivision M ¼ 5 is enough to make the relative error less than 1%. So the numerical

method of (8) and (9) has a very fast convergent rate. Also, the strain energy changes of two examples

shown in Fig. 2(a) and (b) are analyzed using the present numerical model of (3), (7)–(9). It is found that the
results based on subdivision M ¼ 5 are agreeable with FEM calculations.



Table 1

Normalized stress intensity factor KIðkÞ=K0
I at the inner tip

Crack space k KIðkÞ=K0
I using various subdivision number M Accurate

1 2 3 4 5

0.2 1.1120 1.1126 1.1126 1.1126 1.1126 1.1125

0.1 1.2510 1.2558 1.2561 1.2560 1.2558 1.2551

0.05 1.4525 1.4726 1.4758 1.4763 1.4761 1.4729

0.02 1.8085 1.8835 1.9046 1.9122 1.9151 1.9046

0.01 2.1337 2.2870 2.3423 2.3681 2.3813 2.3716

0.005 2.4936 2.7594 2.8739 2.9362 2.9736 2.9992
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2.3. The procedure to numerically calculate effective moduli of a sample

Eqs. (5), (7)–(9) form an accurate numerical model to obtain the effective moduli. Two special types of

cracked plates are particularly of concern in the study. The first one is associated with isotropic properties

where the effective elastic stiffness tensor C can be characterized by the bulk and shear moduli K and G. As

shown in Fig. 3(a), (b) and (e), the random, equilateral triangular, and equilateral hexagonal distributions

correspond to this case. The second is associated with a special orthotropic property. As shown in Fig. 3(c),

(d) and (f), the parallel, diamond, and rectangular distributions correspond to the second case, where the
effective elastic stiffness tensor C can be characterized by the Young’s modulus normal to the crack

direction and shear modulus along the crack direction, i.e., E1 and G12.

By applying the four far-field stress conditions, i.e., hydrostatic stress, pure shear, single pull, and pure

shear with magnitudes r1
K , r

1
G , r

1
E , and r1

G , respectively, the four effective moduli K, G, E1 and G12 can be

independently calculated by taking advantage of the independent forms of (5) as follows
1

K0

K � K0

K0 þ nðK � K0Þ
¼ � 1

ðr1
K Þ

2

1

A
r1
K :
XN
i¼1

1

4li
½nihbii þ hbiini�; ð11Þ

1

G0

G� G0

G0 þ gðG� G0Þ
¼ � 1

ðr1
G Þ

2

1

A
r1
G :
XN
i¼1

1

4li
½nihbii þ hbiini�; ð12Þ

1

E0

E1 � E0

E0 þ nEðE � E0Þ
¼ � 1

ðr1
E Þ

2

1

A
r1
E :
XN
i¼1

1

4li
½nihbii þ hbiini�; ð13Þ

1

G0

G12 � G0

G0 þ gGðG12 � G0Þ
¼ � 1

ðr1
G Þ

2

1

A
r1
G :
XN
i¼1

1

4li
½nihbii þ hbiini�; ð14Þ
where n ¼ ð1þ m0Þ=2, g ¼ ð3� m0Þ=4, nE ¼ 5=8, gG ¼ ð3� m0Þ=4, E0 and m0 denote Young’s modulus and

Poisson’s ratio of the isotropic plate matrix, and K0 and G0 are 2-D bulk and shear moduli with

K0=E0=2ð1� m0Þ and G0 ¼ E0=2ð1þ m0Þ. The procedure to solve the effective modulus of a sample can be

described as follows:

(a) produce a sample containing N cracks;

(b) apply a far-field stress condition correspondingly;

(c) select an initial number of M , say 5;

(d) solve the system of N �M vectorial linear algebraic equations (9) to get �tiðfpÞ;
(e) substitute the �tiðfpÞ into (8) to get tið1iÞ and then (7) to get hbii;



Fig. 3. The six types of distributions of cracks: (a) equilateral triangular, (b) equilateral hexagonal, (c) diamond, (d) rectangular,

(e) random, and (f) parallel distributions.
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(f) substitute the hbii into the corresponding one of (11)–(14) to get an effective modulus of the sample;
(g) double the number M and return to (d), then go ahead to (f) to get another effective modulus of the

sample;

(h) if the relative difference of the two effective moduli is less than 0.01, the later one is taken as the effective

modulus of the sample, and the computation for the sample is stopped, otherwise return to (g).

For regular distributions of cracks, the effective moduli based on the procedure depend on the sample

size characterized by the crack number N . When the number N is sufficiently large, the effective moduli

stabilize. For random distributions of cracks, the computed effective moduli depend on the sample size and
sample number. When the crack number N and the sample number are sufficiently large, the effective

moduli stabilize. The determination of the crack number N and the sample number is given in the following
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sections. Poisson’s ratio of the plate matrix is taken to be zero for simplicity. It will be shown that the

results with other Poisson’s ratios can be exactly related to the results with Poisson’s ratio being zero. This

will be illustrated in Section 5.
3. Plates with regularly distributed cracks

3.1. Sample sizes

The crack density of a cracked plate is denoted as q, which is defined through a sufficiently large piece of

the cracked plate as follows,
q ¼ 1

A

XN
i¼1

l2i ; ð15Þ
where A, li and N are the area of the piece, the half length of the ith crack and the number of cracks in-

cluded in the piece. For regular distributions, the crack density can be obtained based on a unit cell. As

shown in Fig. 3(a)–(d), the circular samples of plates with the four distributions of cracks are considered in

this study, which are the equilateral triangular, equilateral hexagonal, diamond, and rectangular distri-

butions. Their crack densities can be obtained as 2
ffiffiffi
3

p
l2, 2

ffiffiffi
3

p
=3l2, l2=d, and l2=d, respectively, where l

denotes the half crack length, d is the distance between two crack rows for the diamond and rectangular
distributions, and the maximum crack length is taken as one unit. The circular samples are taken from a

large cracked plate by drawing a circle with a symmetric point as center and the length with some units as

radius. The circular samples contain those cracks only if their centers are inside the circle. The crack

densities of the circular samples based on (15) are different from those based on a unit cell. But as the

sample size increases, their difference approaches to zero.

As mentioned previously, the effective moduli vary with the sample size. The sample size can be char-

acterized by the crack number in the sample. Following the calculation procedure listed in Section 2.3, the

effective moduli are obtained for various sample sizes. It is found that the effective moduli can only stabilize
(compared to larger sample sizes, their relative differences are less than 0.01) when the crack number is very

large, say 500. The sample size with the number secures that the crack density based on (15) is agreeable

with the one based on a unit cell.

Theoretically, when the sample size becomes sufficiently large, the displacement field in the sample is

statistically uniform. So for the triangular and hexagonal distributions, the average displacement discon-

tinuity hbii should be the same for all the cracks for the far-field hydrostatic stress condition, and there are

just two different values for all the average displacement discontinuity hbii for the far-field pure shear

condition, depending on the relative angles to the far-field shear stresses. For the diamond and rectangular
distributions, the average displacement discontinuity hbii should be the same for all the cracks under the

simple pull and pure shear far-field stress condition. Actually, it is observed in calculation examples that the

average displacement discontinuities of the cracks in the most outer layer are a little different from the inner

cracks, and as the sample increases, the difference decreases. Also, a useful observation is that the average

displacement discontinuities of the cracks in the center of the sample can stabilize at a small sample size.

Therefore, taking the advantage, the effective moduli for regular distributions of cracks can be easily

calculated based on relatively small samples.

3.2. Numerical results for the triangular and hexagonal distributions

Plates with these two distributions of cracks can be assumed isotropic due to the symmetry. Crack
lengths from 0 to 0.99, which correspond to the crack densities from 0 to 0.8660 for the triangular
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distribution and from 0 to 0.2887 for the hexagonal one are considered. The numerical results of the

effective bulk and shear moduli are obtained following the calculation procedure. The effective moduli are

also calculated using FEM to verify the present numerical model. These results are plotted in Fig. 4(a) and

(b). It is seen that the present numerical model is agreeable with FEM results. As expected, the hexagonal
distribution of cracks has much lower stiffness than the triangular one. Meanwhile, an interesting phe-

nomenon is seen for the two distributions, in which the effective moduli can remain rather high when the

crack length has reached 99% of its maximum length, which is called a boundary layer phenomenon.

Theoretically, the effective moduli must vanish at the maximum crack length. So they must drop to zero

in the narrow region [0.99, 1] of crack length variation. Based on the analysis, the curves of the effective

moduli corresponding to the crack length region [0.99, 1] are simply plotted by connecting the two end

values of the effective moduli at 0.99 and 1. The effective moduli within the region are not calculated in

detail due to the very slow convergence rate.
3.3. Numerical results for the diamond and rectangular distributions

Nemat-Nasser and Yu (1993) numerically calculated the effective moduli for the rectangular distribution

with the crack row distance being 0.25 based on a unit cell containing one crack. To compare with their

results, the crack row distance is also taken as 0.25 in the present calculation for the rectangular and

diamond distributions. Hence, the maximum crack densities are 1 for the two distributions when the crack

length reaches its maximum value 1. Similarly, the effective Young’s and shear moduli are calculated for

various crack lengths from 0 to 0.99 corresponding to crack density from 0 to 0.9801. The present results
together with those of Nemat-Nasser and Yu (1993) are plotted in Fig. 5(a) and (b). It is noted that the

results by Nemat-Nasser and Yu (1993) correspond to the case of plain strain problem with Poisson’s ratio

being 0.25. The results can be transformed to the present case, as illustrated in Section 5.

An interesting observation from the results in Fig. 5(a) and (b) is that, compared to the diamond dis-

tribution, the rectangular distribution has much higher effective Young’s modulus, but lower effective shear

modulus. Besides, it is seen that the present results are agreeable with those of Nemat-Nasser and Yu (1993)

for all the crack densities except 1. Nemat-Nasser and Yu (1993) claimed that the effective Young’s and
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shear moduli were found to be about 0.03 and 0.05 at the maximum crack length 1. As the effective moduli

must vanish at the crack length 1, they thought that the values of 0.03 and 0.05 might be the numerical error
of their numerical model. However, as their model cannot be valid for the limit case of crack length 1, they

had to get the values based on a limiting process of the crack length. It is assumed that the values of 0.03

and 0.05 were obtained using a crack length very close to 1, such as 0.999. As the boundary layer phe-

nomenon similarly exists, the small values may accurately correspond to the effective moduli with the crack

length 0.999.

Furthermore, the rectangle distribution with the same crack row distance being 0.25 is taken as an

example to see the effect of crack size. Two sizes of cracks are considered. The big and small cracks are

aligned column by column, and the distances between the crack centers keep the same as 1, as shown in Fig.
6. The three ratios of the big crack to the small one, i.e., 1, 5 and 10 are analyzed. The effective Young’s and

shear moduli versus crack density up to 0.6 are calculated and plotted in Fig. 6(a) and (b). It is interesting to

see that compared to the case of one sized cracks, effective Young’s modulus becomes much larger but

effective shear modulus becomes a little smaller due to the crack size effect.
4. Plates with randomly distributed cracks

4.1. The generation of a sample

To generate a sample, a random number generator which randomly and successively generates the

location of each crack is used to determine the centers of N cracks for parallel cracks, and the centers and

orientations for random cracks in a circular region. When the location of a new crack is determined using

one (the case of parallel cracks) or two (the case of random cracks) random numbers, the crack is checked if

it overlaps with any of the previously generated cracks. If it overlaps with a previous crack, it needs to be

regenerated using other random numbers. Deferent from the existing generation of cracks where the

spacing between cracks is kept no smaller than 0.02 (Kachanov, 1992; Shen and Yi, 2001), the present
calculation does not require the smallest spacing. The crack number, crack length and the radius of the
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circular region are given so that a crack density can be obtained. For two crack sizes, the big cracks are

generated first. For random crack sizes, it is assumed that the crack sizes range from 1 to 10. A set of crack

sizes are randomly determined first, and then the cracks with the crack sizes are randomly distributed in a

circular region in the order from big to small cracks.

Once a sample is generated, its effective moduli can be calculated following the calculation procedure

described in Section 2.3. However, for the random case, the effective moduli depend on samples. They can

stabilize when sample size and number are sufficiently large. But how large a sample and how many samples

for each sample size should be used to get the stabilized average value are not clear. Some existing cal-
culations simply took 10 or 15 samples and 25, 36 or 50 cracks in each sample. However, the detailed

analysis has not been done. Actually, those sample sizes are not sufficiently large, as shown in the following

section.
4.2. Sample size and number at which effective moduli stabilize

The sample size and sample number at which the effective moduli can stabilize may vary with crack

densities. So, the crack densities 0.1 and 0.6 are taken to carry out the study in details. The crack numbers

from 50 to 500 and the sample numbers from 10 to 40 are considered. Figs. 7 and 8 plotted the results of

effective moduli based on the various sample sizes. For each sample size, 20 samples are calculated. So, it is
seen from these results that (a) the higher the crack density is, the larger the sample size that is required for

the effective moduli to stabilize. For example, 50 and 300 cracks are suitable for crack density being 0.1 and

0.6; (b) The sample size has less effect on the effective shear modulus than on the bulk or Young’s modulus

for the high crack density 0.6; (c) for a sample size, the higher crack density shows a larger scatter of the

effective moduli.

To check if 20 samples are sufficient for each sample size, the effect of sample number is analyzed.

Fig. 9 shows the results of the effective bulk and Young’s moduli for the random and parallel cracks

with the crack density 0.6 and the sample size of 50 cracks. It is seen that 10–20 samples can be suffi-
cient.
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Fig. 7. The effect of sample size on the effective moduli for the random distribution of cracks with the low and high crack densities.
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4.3. One, two and random sizes of cracks

Based on the analyses of the effect of sample size and number, 20 samples are taken for each case of the
present calculations. For the one sized cracks, six sample sizes with crack number from 50 to 300 are taken

for the six crack densities from 0.1 to 0.6. For the two sizes of cracks, the two ratios of the big and small

cracks, i.e., 5 and 10 are considered. The crack densities of the big and small cracks are taken to be the

same. So the number of the small cracks is 25 and 100 times as many as the big cracks for the two ratios of

crack sizes. Therefore, 1300 cracks including 50 big cracks and 1250 small ones for the ratio 5, and 5050

cracks including 50 big cracks and 5000 small ones for the ratio 10 are considered in each sample. For the

random sizes of cracks, the sample size of 2000 cracks is used. Then, the effective moduli of each sample are

calculated following the calculation procedure. The average values are used to plot Fig. 10(a)–(d). It is seen
that the crack size effect can decrease the effective moduli by about 10–30% for crack density 0.6. The effect
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on the effective shear moduli is relatively less than that on the effective bulk and Young’s moduli.

In general, the effect of crack size can be significant for very high crack density, such as higher than

0.4.
5. Micromechanics analysis of effective moduli

5.1. Explicit and exact dependence of effective moduli on E0 and m0

Since the fundamental solutions rn
j ð1i; 1jÞ and rs

jð1i; 1jÞ used in (6) are independent of Young’s modulus

E0 and Poisson’s ration m0 of the plate matrix, it can be seen from (3), (6) and (7) that the strain energy

change Dfmicro is independent of m0 and is expressed as
Dfmicro ¼
1

E0

Df 0
micro; ð16Þ



0 10 20 30 40

Sample Number

0.20

0.23

0.26

0.29

0.32
Random cracks with crack density 0.6

0 10 20 30 40
Sample Number

0.09

0.12

0.15

0.18

0.21
Parallel cracks with crack density 0.6

K
/K

0

E
1/

E
0

(a) (b)
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where Df 0
micro is the strain energy change associated with a plate matrix with unit Young’s modulus, which is

also independent of m0. By taking a unit area of circular sample, the right side of (11)–(14) can be expressed

as �2
E0
Df 0

micro where Df 0
micro is only associated with the geometry information of the cracks contained in the

circular samples and the types of the far-field stress conditions. Therefore, K and G, and E1 and G12 can be

derived as
K
K0

¼ 1

�
1

 
þ 1

ð1� m0Þ
Df 0

micro

1� 1
2
Df 0

micro

!
; ð17Þ
G
G0

¼ 1

�
1

 
þ 1

ð1þ m0Þ
Df 0

micro

1� 1
4
Df 0

micro

!
; ð18Þ
E1

E0

¼ 1

�
1

 
þ 2Df 0

micro

1� 3
4
Df 0

micro

!
; ð19Þ
G12

G0

¼ 1

�
1

 
þ 1

ð1þ m0Þ
Df 0

micro

1� 1
4
Df 0

micro

!
: ð20Þ
It is noticed that Df 0
micro is dependent of the types of the far-field stress conditions and the geometry of

cracks. So, Df 0
micro in the four expressions (17)–(20) may be different. It is known that Cherkaev et al. (1992)

derived the stress invariance and shift characteristics of effective compliance in planar elasticity, which is

also referred to as the CLM theorem. Zheng and Hwang (1996) derived more general shift characteristics of

effective compliance for two-dimensional composites, and Hu and Weng (2001) gave a new derivative on

the shift property, and obtained some new results for three-dimensional composites. For the current special

case of cracks, the present expressions are agreeable with the shift characteristics of effective compliance by

these researchers. But the present derivation is simple and direct, and the physical meaning of the

expressions is clear. Using the expressions (17)–(20), the effective moduli associated with two matrix
Poisson’s ratios can be related each other. So, all the numerical calculations are carried out for the matrix
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Fig. 10. The effect of crack sizes on the effective moduli for the random and parallel distributions.
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Poisson’s ratio being 0. The effective moduli with other matrix Poisson’s ratio can be correspondingly

derived.

5.2. Micromechanics models

Some existing micromechanics models, including the non-interacting solution, the differential method,

the generalized non-interacting solution and the generalized self-consistent method are compared with the

present numerical results. For convenience, these models are briefly summarized as follows.

For the random and parallel cracks, the non-interacting solutions (e.g., Kachanov, 1992) are
K
K0

¼ 1

�
1

�
þ pq
ð1� m0Þ

�
and

G
G0

¼ 1

�
1

�
þ pq
ð1þ m0Þ

�
; ð21Þ
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and
E1

E0

¼ 1

�
ð1þ 2pqÞ and

G12

G0

¼ 1

�
1

�
þ pq
ð1þ m0Þ

�
: ð22Þ
The differential method for the two types of cracks leads to (e.g., Norris, 1985; Zimmerman, 1985;

Hashin, 1988; Huang et al., 1996)
K
K0

¼ 1

�
1

�
þ 1

ð1� m0Þ
ðepq � 1Þ

�
and

G
G0

¼ 1

�
1

�
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ðepq � 1Þ

�
; ð23Þ
and
E1

E0

¼ 1=ð1þ pq=2Þ4 and
G12

G0

¼ 1

�
1

�
þ 1

ð1þ m0Þ
pq

�
þ p2

4
q2

��
: ð24Þ
It is noticed that (24) are derived from the one associated with a general orthotropic matrix by Hashin
(1988), which is a little higher that the closed form solution by Huang et al. (1996). It is also noticed that the

plot of Huang et al. (1996) did not follow their closed form solution. However, the plots of the differential

method by Zhan et al. (1999) and Feng et al. (2003) seem to follow the closed form solution by Huang et al.

(1996).

The generalized self-consistent method for the random cracks gives (Huang et al., 1994)
E
E0

¼ 1

�
ð1þ pqþ DEðm0Þq2Þ and

G
G0

¼ 1

�
1

�
þ pq
ð1þ m0Þ

þ DGðm0Þq2

�
; ð25Þ
where DEðm0Þ ¼ 1:17, 1.12 and 1.02 and DGðm0Þ ¼ 0:93, 0.78 and 0.61 for the Poisson’s ratio of the matrix
being 0.2, 0.3 and 0.4 and the case of plain strain.

Besides, it is worth mentioning the generalized non-interacting solution (Shen and Yi, 2000a, 2001). For

the case of 2-D cracks, it gives
K
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1
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It is noticed that Ponte Casta~neda and Willis (1995) derived the estimates of Hashin–Shtrikman type,

which coincide with the generalized non-interacting solution for general ellipsoidal inhomogeneities by

Shen and Yi (2001). For the case of circular or spherical inhomogeneities, the generalized non-interacting

solution coincides with the Mori–Tanaka solution. And for the present case of cracks, the generalized non-

interacting solution becomes (26) and (27). It is known that the generalized non-interacting solution is
derived using the non-interacting approximation to obtain the strain energy change Dfmicro. So, it has the

same simplicity as the conventional non-interacting solution, while it seems to have rather higher accuracy.

The underlying reason causing the difference between the two non-interacting solutions is that the gen-

eralized non-interacting solution only neglects the interactions among inhomogeneities, but the conven-

tional one neglect both the interactions among inhomogeneities and the interactions between

inhomogeneities and the boundary of a representative sample (see Shen and Yi, 2001). Also, it is noticed

some other micromechanics models such as the model by Feng and Yu (2000) and the interactive direct-

derivation (IDD) method by Zheng and Du (2001). The model by Feng and Yu (2000) are close to the
differential method, and the IDD method by Zheng and Du (2001) coincides with the generalized non-

interacting solution when crack density is less than 1=p. In general, all these micromechanics methods are
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exact at the first-order according to the Taylor series of crack density, but approximate at the second-order

term, as pointed out by many researchers (e.g., Budiansky and O’Connell, 1976; Zimmerman, 1991). So,

comparison with the present numerical results may determine which one can provide the optimum esti-

mation of the effective moduli of cracked plates with general crack densities.

5.3. Comparison of micromechanics models, existing and present numerical results

The predictions of micromechanics models (21)–(27), the existing numerical results and the present

numerical results for the case of one sized cracks are plotted in Figs. 11 and 12. It is seen from Fig. 11(a)–(d)

that the differential method can provide the optimum estimation of the effective moduli of cracked plates
with general crack densities though the relative difference is still significant for crack density higher than

0.4. It is noted that the numerical results associated with identical sized cracks are used to compare with the

micromechanics models. However, it is seen from the comparison of Figs. 10 and 11 that the numerical
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Fig. 11. The comparison of some micromechanics models and the present numerical results associated with one sized cracks.
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results associated with the random sizes of cracks are very close to the predictions of the differential

method. The present numerical results about the effect of crack size provide a support to the assertion by

Salganik (1973) on the application of the differential method to cracked bodies. He stated that the differ-

ential method should be expected to be more accurate as the size distribution becomes broader.
It is noticed that there are no estimations for the parallel cracks using the generalized self-consistent

method, and DEðm0Þ and DGðm0Þ in (25) for the random cracks do not obey the rule of the dependence of

effective moduli on the Poisson’s ratio described in (17)–(20). Theoretically, DEðm0Þ should not depend on

the Poisson’s ratio, as shown in (19). So the effective Young’s modulus based on the generalized self-

consistent method is plotted in Fig. 12, where the average value of the three DEðm0Þ given by Huang et al.

(1994) is assumed.
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For the random and parallel cracks, Fig. 12(a) and (b) show the effective Young’s moduli predicted by

the existing numerical calculations, the present numerical results and the micromechanics models. It is

noted that the effective Young’s moduli for the random distribution are derived from the corresponding

effective bulk and shear moduli when they are not directly given, such as the results by Huang et al. (1996),
Shen and Yi (2000b) and the present calculation. When the crack density is lower than 0.3, all the numerical

results are close to the predictions of the differential method. So, the numerical results by Renaud et al.

(1996) and Zhan et al. (1999) are not plotted in the figures for clarity, as they only analyzed the crack

density up to 0.3 and 0.35. However, it is noticed that the results by Zhan et al. (1999) for crack density of

0.35 are significantly larger than the predictions of the differential method. When the crack density becomes

larger than 0.3, the differences among these existing numerical results are significant.

It is seen from Fig. 12(a) and (b) that all the numerical results vary between the differential method and

the non-interacting solution. It has been mentioned previously that the numerical results of the effective
moduli of 2-D cracked solids by Shen and Yi (2000b, 2001) actually involve the approximation of Ka-

chanov’s method (Kachanov, 1987). Besides, the sample sizes are also not sufficiently large. Thus, it can be

thought that the assumptions and the insufficiently large sample size are the reasons that cause the effective

moduli significantly larger than the present ones. Huang et al. (1996) obtained the effective moduli based on

unit cells with 25 random or parallel cracks for the crack density up to 0.6. It is seen from Fig. 12(a) and (b)

that Huang et al. (1996) are also significantly larger than the present ones. Huang et al. (1996) claimed that

the results based on 50 cracks were compared. However, the effect of sample size on the effective moduli in

Figs. 6 and 7 shows that when samples are not sufficiently large, the effective moduli tend to become larger
for the high crack densities. So it is believed that their sample sizes may not be sufficiently large for the

crack densities larger than 0.3. It is also seen from Fig. 12(a) and (b) that the numerical results by Feng et

al. (2003) are relatively closer to the present ones. However, it has been checked that Kachanov’s method

causes the strain energy change Dfmicro to become smaller, which causes the effective moduli to become

significantly larger. So it is believed that the effect of other approximations involved in the calculations by

Feng et al. (2003) may partially cancel with the effect of Kachanov’s approximate method.

Fig. 12(c) and (d) shows a comparison between the plates with random and regular cracks. It is inter-

esting to see that when the crack density is lower than 0.15, the effective Young’s moduli associated with the
random cracks and the hexagonally distributed cracks are agreeable with each other, while the parallel

cracks and the cracks with the diamond distribution lead to the similar results. As the two regular dis-

tributions of cracks make the Young’s moduli of the plates to decay severely, it seems that the amplifying

effect of the interaction among randomly distributed cracks is dominant. Actually, as far as the two cases

with the crack density being less than 0.15 are considered, the agreement between the generalized non-

interacting solution and the present numerical results confirms that the amplifying and shielding effects

among randomly distributed cracks on the effective Young’s moduli happen to cancel each other. However,

the competition of the amplifying and shielding effects of the multiple crack interaction on the effective
moduli depends on the far-field stress case, the crack distribution and density. A general and clear con-

clusion has not been achieved, even though many researchers have considered the problem.
6. Conclusion

An accurate numerical model is proposed to calculate the effective moduli of plates with various dis-

tributions and sizes of cracks. The six types of crack distributions and three crack sizes are considered.

Some conclusions are summarized as follows.

The comparison with FEM calculations confirms the validity of the proposed numerical model. The

calculations for the regular distributions show very interesting results, such as the boundary layer phe-
nomenon and the different effects of the rectangular and diamond distributions on the effective Young’s and
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shear moduli. For the random and parallel cracks, it is found that when the crack density becomes higher, a

larger sample size is required to get stabilized effective moduli, and the sample number 10–20 may be

sufficient to get stabilized average values. Among the micromechanics models, the differential method can

provide the optimum estimation of the effective moduli. However, the relative differences between the
differential method and the present numerical results associated with identically sized cracks are still sig-

nificant for the crack densities higher than 0.4. But the numerical results associated with the random sizes of

cracks are very close to the predictions of the differential method. The effective moduli associated with the

regular distributions of cracks may be more sensitive to the crack sizes than those of the random distri-

butions. Also, it is seen that the effective moduli decrease as the size distribution of the cracks gets broader.

This provides a support to the assertion by Salganik (1973), who stated that the differential method should

be expected to be more accurate as the size distribution becomes broader.
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